If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+99d-100=0
a = 1; b = 99; c = -100;
Δ = b2-4ac
Δ = 992-4·1·(-100)
Δ = 10201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10201}=101$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(99)-101}{2*1}=\frac{-200}{2} =-100 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(99)+101}{2*1}=\frac{2}{2} =1 $
| 10.1=-9.1+6v | | -9.1=y/3+10.1 | | -9.1=y/3=10.1 | | 4+v/7=-4.75 | | p^2-99p-100=0 | | 5(3x+4)=25(x) | | 6(x-5)+3x=6x-10(-3+X) | | 5^(3x+4)=25^(x) | | (y-1/3)-(y+1/4)=y | | y-1/3-y+1/4=y | | 8x–3x+9=4x–1 | | 10×2+1=15+x÷3 | | t^2-3(2t+9)=0 | | 25x-3x+2=x-5 | | 4x-4=4x-4= | | 6(y-4)-4(5y+7)=3(y-2)-4(2y+1) | | -2(3x+10)=-9x+22+3x | | 18x−92x+1=2 | | 6×(x+1)÷4×x=16 | | 3x-(5-3x)=61 | | 18⋅x−92⋅x+1=2 | | -7x+4=3(x-3)+1 | | 7x-2x+12=8+4+5x | | b^2+3b+4=2 | | -2.668=1.456/x | | 2x²-16x+24=0 | | 8,6x=12 | | 8-a=5a-4 | | y-5.2=-4.2 | | -5x-10(3x-6)=3(24-9x) | | 2.7=8/x | | 2x+9-6x=-31 |